

John Lenth

Herrera Environmental Consultants

Andy Rheaume
City of Redmond

Tracy Tackett
Seattle Public Utilities

Presentation Overview

- Overview of High Point redevelopment project
- Description of High Point bioretention swales
- Description of High Point bioretention monitoring design
- Results from water year 2007 and 2008 monitoring
- * Lessons learned
- Expanded monitoring

High Point Redevelopment Project

In 2003, the Seattle
Housing Authority
took the lead in
implementing a six
year project to
redevelop the High
Point Neighborhood
in West Seattle

High Point Redevelopment Project

Project will double the housing density and double the impervious surface for the High Point sub-basin of Longfellow Creek

Bioretention Diagram from the Low Impact Development Technical Guidance Manual for Puget Sound

2. Bioretention cell: Prince George's County, Maryland

Figure 2 Bioretention design with elevated under-drain and fluctuating aerobic/anaerobic zone. Graphic by AHBL Engineering

High Point Bioretention Swale Monitoring Goal

Monitor bioretention swales to create a feedback loop to the design engineer that would improve the design and lower costs for future retrofits

- * Three year project
- Monitoring elements
 - Controlled infiltration testing on two occasions
 - Continuous monitoring:
 - Discharge from underdrain system
 - Ponding depth
 - Precipitation
 - HSPF model calibration monitoring

High Point Bioretention Swale Monitoring Location and Site Plan

- Design Assumptions
 - In the infiltration rate for the engineered soil layer was assumed to be 2 inches/hour based on results from laboratory testing (ASTM D 2434: Standard Test Method for Permeability of Granular Soils).

Infiltration Testing

- Surface infiltration rates to the NDS swale were measured on two occasions (March 7 and April 11, 2007)
- Used infiltration test method adapted from the Washington State Department of Ecology's procedure for pilot infiltration testing.

Infiltration Testing

Calculated Infiltration Rate = 4.2 inches/hour

Infiltration Testing

Calculated Infiltration Rate = 6.1 inches/hour

Surface Ponding

Surface Ponding

Underdrain Discharge Monitoring

- DesignAssumptions
 - Based on geotechnical reports for the project, the infiltration rate for the underlying till soils was assumed to be so low as to be insubstantial

Underdrain Discharge

Underdrain Discharge

HSPF Calibration Monitoring

HSPF Calibration Monitoring

Lessons Learned

- Monitoring of LID system can provide vital feedback to the design engineer for:
 - Improving performance
 - Lowering costs
 - Determining long-term maintenance requirements
- Whenever possible, monitoring objectives and required infrastructure should be considered during the design phase
- Unanticipated changes in site conditions may impact the overall experimental design

Expanded Monitoring

- * One reference bioretention swale
 - Collection of flow weighted composite samples for characterizing influent pollutant concentrations
 - HSPF model calibration monitoring
- * Two test bioretention swales
 - Controlled infiltration testing on two occasions
 - Continuous monitoring:
 - Discharge from underdrain system
 - Water level in underdrain system
 - Ponding depth
 - Precipitation
 - Collection of time weighted composite samples from the underdrain system for characterizing effluent pollutant concentrations

Expanded Monitoring

